A heap é uma estrutura especial de memória usada pelo processo. O que tem de especial nela é o fato de seu tamanho ser variável, já que sua memória pode ser alocada ou desalocada dinamicamente pelo processo. Isso pode ser feito usando syscalls do sistema operacional e o mesmo é responsável por alocar mais páginas de memória para a seção caso seja necessário.
No Linux o segmento de dados pode ser aumentado ou diminuído usando a syscall brk, e é esse espaço de memória que os programas normalmente usam para a heap. Em C nós normalmente não usamos a heap diretamente e, ao invés disso, usamos a função malloc() e semelhantes para lidar com a alocação dinâmica de memória. O que alguns não sabem é que na verdade chamadas para a função malloc() ou free() não necessariamente irão resultar na alocação ou desalocação de memória para o processo. Isso se dá porque é a libc quem de fato gerencia a heap e nós não estamos diretamente solicitando ou liberando memória para o sistema operacional.
*libc é a biblioteca padrão da linguagem C que contém funções essenciais para tarefas básicas como: Manipulação de strings e arquivos, entrada e saída de dados, funções básicas de matemática etc.
A função malloc(), de acordo com a implementação da glibc, usa o segmento de dados, o dividindo em uma ou mais regiões de memória que eles chamam de “arenas”. A arena principal corresponde à heap original do processo, porém outras arenas também podem ser alocadas para o processo. Inicialmente cada thread criada no processo tem uma arena individual até atingir um certo limite pré-definido de arenas que podem ser alocadas no processo. Atingindo esse limite, as threads posteriores passam a compartilhar a mesma arena. Em cada arena de memória existem divisões da memória que são chamadas de maneira homônima de heap, e são nessas heaps que a função malloc() de fato aloca memória para o usuário da libc.
Cada bloco de memória que malloc() aloca na heap é chamado de chunk, e cada chunk contém metadados usados pelo sistema interno de malloc para organizar a heap como uma lista duplamente encadeada. Para fins de ilustração, abaixo está a estrutura de um chunk, usada na glibc:
struct malloc_chunk { INTERNAL_SIZE_T mchunk_prev_size; INTERNAL_SIZE_T mchunk_size; struct malloc_chunk* fd; struct malloc_chunk* bk; /* Only used for large blocks: pointer to next larger size. */ struct malloc_chunk* fd_nextsize; struct malloc_chunk* bk_nextsize;
O valor mchunk_prev_size seria o tamanho do chunk anterior e mchunk_size o tamanho do chunk atual. Os ponteiros *fd e *bk são usados somente quando o chunk está livre, e seriam ponteiros usados para a lista circular duplamente encadeada de chunks que apontam para o chunk posterior e anterior, respectivamente. No entanto, essa estrutura não representa muito claramente como o chunk é de fato usado pelo sistema de malloc, na figura abaixo isso é ilustrado com mais precisão.
O ponteiro que malloc() retorna não aponta para o início do chunk mas sim para o início do espaço de memória que pode ser usado pelo usuário. O tamanho do espaço de memória de um chunk é alinhado pelo tamanho de um double word na arquitetura. Caso malloc() seja chamado passando um tamanho desalinhado como argumento, um espaço extra é alocado para manter o alinhamento. Por exemplo, se o alinhamento está sendo feito para 8 bytes e malloc é chamada com 9 como argumento, malloc irá te devolver um chunk com 16 bytes de espaço de memória usável. Além do alinhamento no tamanho do chunk, também existe um alinhamento no endereço de memória retornado por malloc() que é sempre alinhado para o tamanho de uma word. Isso é feito porque em algumas arquiteturas esse alinhamento de memória é necessário para se evitar uma exceção. Em outras arquiteturas (x86, por exemplo) o alinhamento melhora a performance do processador no acesso à memória.
Como existe esse alinhamento no tamanho de um chunk isso garante que os três bits menos significativos de mchunk_size não sejam necessários para definir o tamanho do chunk. Se aproveitando disso, os três últimos bits são usados como flags para determinar alguns metadados usados pelo sistema de chunks.
O bit M indica que o chunk não pertence a nenhuma arena e, ao invés disso, foi alocado dinamicamente em uma memória mapeada. Caso este bit esteja ligado, os outros dois são ignorados. No contexto de um chunk livre este bit está sempre desligado, tendo em vista que a lista encadeada de chunks livres somente se aplica a chunks que estão em alguma arena.
Os chunks diretamente mapeados na memória (com bit M ligado) são criados para chunks muito grandes. Esses chunks quando liberados com a função free() são imediatamente liberados da memória. Por outro lado, usar free() em um chunk comum não necessariamente irá liberar memória para o sistema operacional. O que free() faz nesse caso é marcar o chunk como livre o adicionando de volta à lista de chunks livres. Assim como é indicado nesse trecho da glibc:
/* Mark the chunk as belonging to the library again. */ (void)tag_region (chunk2mem (p), memsize (p));
Repare como o comentário descreve a ação como “marcar o chunk como pertencente à biblioteca novamente”, e é efetivamente isso que a função free() faz, não sendo necessariamente uma liberação de memória para o sistema operacional. Inclusive um recurso de otimização que a glibc usa é o que eles chamam de tcache (Thread Local Cache), que se trata de uma lista de chunks existente em cada thread individualmente. Quando você aloca um novo chunk na thread e posteriormente o libera, ele é adicionado ao tcache daquela thread e pode ser reutilizado em uma nova alocação posterior.
Um adendo que a função free() pode efetivamente liberar memória para o sistema operacional se houver vários chunks livres no topo do segmento de dados (o que raramente acontece). Ela faz isso chamando a função interna systrim(), que por sua vez (no Linux) usa a syscall brk para diminuir novamente o segmento de dados.
Um detalhe interessante que vale citar aqui é que na glibc (no Linux) existem as funções brk e sbrk que servem como wrappers para aumentar/diminuir o segmento de dados. O sistema de liberação de memória do systrim() espera que essas funções não sejam utilizadas diretamente para poder fazer a liberação de memória apropriadamente. Se você usá-las em seu código por algum motivo, irá “quebrar” o sistema de liberação de memória automático do free(), o fazendo não mais liberar memória quando é usado em chunks de arenas. Logo, não é recomendável que você use essas funções diretamente a menos que você esteja implementando seu próprio sistema de gerenciamento de memória dinâmica.
O código abaixo é um experimento a fim de vermos na prática os metadados do chunk no Linux:
// gcc test.c -o test #include <stdio.h> #include <stdlib.h> int main(void) { size_t *content = malloc(8); size_t chunk_size = content[-1] & ~0b111; size_t chunk_flags = content[-1] & 0b111; printf("size: %zu\nflags: %zu\n", chunk_size, chunk_flags); return 0; }
No meu Linux é retornado 32 como tamanho do chunk e 1 como flag, indicando que somente o bit P está ligado. Sugiro ao leitor variar o tamanho passado para malloc a fim de comprovar que o alinhamento do tamanho do chunk de fato ocorre. Também sugiro passar um número grande para malloc() a fim de ver a partir de qual tamanho malloc() irá deixar de usar uma arena e irá alocar o chunk com mmap(). Caso isso ocorra o bit M será ligado e o número 2 (decimal) será indicado como flags.
Nota: Esse código propositalmente não utiliza free() antes de finalizar o programa. É redundante e desnecessário usá-la quando o programa é finalizado, tendo em vista que todas as páginas de memória usadas pelo processo serão liberadas pelo sistema operacional.
Referências
- 5