Jump to content
  • Sign in to follow this  

    Construindo seu debugger - Parte 2: Forks

       (0 reviews)

    Candeer

    Olá! No artigo anterior falamos sobre Signals, que é de suma importância para a comunicação entre processos, mas para construir o nosso debugger precisamos muito mais do que apenas isso, precisamos de fato ter total controle sobre um dado processo e se possível controlar até o seu própio início.

    Neste artigo será explicado o que são forks e seu uso em desenvolvimento de aplicações em sistemas UNIX. Sem mais delongas, vamos prosseguir!!!😀

    Resumidamente a syscall fork é usada para a duplicação e criação de um processo. Quando um dado processo chama a função fork(), é criada uma cópia idêntinca de seus dados. Note que apenas uma cópia é feita, o processo filho não compartilha o mesmo espaço de memória do pai.

    A syscall fork retorna um PID que é usado para indetificar em qual processos estamos e também dar acesso ao ID do processo filho. Caso o PID seja 0 estamos executando no filho, caso seja qualquer outro somos o processo pai, isso ocorre pois o pai precisa saber o PID do filho, mas o filho não necessariamente precisa saber o seu própio (da mesma maneira que o seu processo não sabe o própio PID ao menos que o mesmo peça).

    Algo interessante de se notar é que os Init System usados para subir e gerenciar serviços de sua máquina trabalham dessa mesma maneira, você pode checar sua árvore de processo usando comando pstree:

    $ pstree

    Dessa maneira você tem uma representação bem visual de como está dividida a sua estrutura de processos 😀. Note que todos os processos são filhos do seu Init system (seja ele SystemV, Systemd, etc). Aconselho você explorar o comando pstree para uma visão bem mais detalhada do seu sistema! Outra abordagem é usar o própio comando ps:

    $ ps -ef

    Rode o comando acima (dependendo da quantidade de processos use um pipe para o less 😉) e com ele teremos uma visão mais detalhada. A coluna PID representa o ID do processo em si e a coluna PPID representa o "Parent Process ID", que nada mais é que o ID do processo pai. Note que o PID 1 é o seu Init System e os seus processos rodam como filho dele!


    Vale notar que o processo Pai do própio init é o PID 0, que é conhecido como "swapper" ou "scheduler", que é o processo responsavel para realização de paging. Paging é o sistema de gerenciamento de memória que salva os dados da RAM em uma memória secundária (HD, SSD e etc) e recupera em formato de páginas (outros PID também são filhos do propio PID 0 como PID 2 que gerencia todas as threads que rodam em Kernel Land(KThread) etc).

     

    Programando Forks

    A syscall fork está na lib  <unistd.h> (Unix Standard library) e tem a seguinte construção:

    #include <sys/types.h>
    #include <unistd.h>
    
    
    pid_t fork(void);

    Precisamos incluir a lib <sys/types.h> para que seja possivel acessar o tipo pid_t. A função fork não espera nenhum parâmetro para a sua construção e o código abaixo demonstra o quão simples é cria um fork.

    #include <stdio.h>
    
    // Acesso a syscall
    #include <unistd.h>
    
    
    // Acesso ao tipo variavel pid_t
    #include <sys/types.h>
    
    
    int main(void)
    {
        int x;
    
        printf("Processo normal...\n");
        printf("Forking...\n");
        sleep(5);
        
        pid_t pid = fork();
        x = 40;
    
        if (pid == 0) {
            printf("Eu sou o processo filho meu PID: %d\n", pid);
        }
        
        else {    
            printf("Eu sou o processo pai de %d\n", pid);
        }
    
        
        sleep(5);
        return 0;
    }

    Compile o código acima da seguinte forma:

    $ gcc -o fork fork.c
    $ ./fork

    Note que o código se "divide" a partir da chamada fork e um if  é usado para saber se estamos executando no pai ou no filho, note também que o pai sabe o PID e o filho não.

    Para melhor visualização o código acima roda por 10 segundos (por conta da chamada ao sleep com esse tempo de espera). Abra um outro terminal e rode o comando:

    $ watch -n1 pstree

    O comando acima vai executar o pstree a cada 1 segundo, desta forma você verá o exato momento da criação do fork.


    Comunicando-se com o processo fork

    Agora imagine que um  processo precisa esperar o seu filho terminar algum trabalho e dependendo do seu sinal o processo pai realiza alguma ação. A comunicação entre o processo pai e o filho se da por signals. O pai pode saber exatamente o estado do seu processo filho usando a syscall wait e waitpid, ambas na lib <sys/wait.h>:

    #include <sys/types.h>
    #include <sys/wait.h>
    
    pid_t wait(int *status);
    
    pid_t waitpid(pid_t pid, int *status, int options);

    A syscall wait espera que ao menos 1 de seus processos filho troque de estado, já a waitpid espera por um processo específico. Como sabemos exatamente qual processo queremos rastrear iremos usar esta call 😀:

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #include <sys/types.h>
    #include <sys/wait.h>
    #include <unistd.h>
    
    
    
    int main(void) {
        
        printf("Spliting work...\n");
    
    
        pid_t pid = fork();
    
    
        if (!pid) {
            int a = 0;
            for(int i = 0; i < 100000000; i++ ) {
                a += i*2 + 10 *i;
            }
    
            return 9;
        }             
    
        int status;
        int signal;
        printf("Waiting child finish work...\n");
    
        waitpid(pid, &status, 0);
    
        
        if (WIFEXITED(status)) {
            signal = WEXITSTATUS(status);
            printf("Child exited, status = %s\n", strsignal(signal));
        }
            
        return 1;
    
    }

    Compile o código acima e execute:

    $ gcc -o work work.c
    $ ./work
    Spliting work...
    Waiting child finish work...
    Child exited, status = Killed

    Veja que após a chamada de fork nosso processo filho executa várias iterações e realiza um cálculo (um cálculo totalmente randômico) e após isso retorna 9. Este retorno em questão é apenas por motivos educativos (no artigo anterior falamos de sinais e como eles funcionam). O processo pai usa a syscall waitpid para esperar que qualquer signal seja enviada do pid especificado. Após receber um status é verificado se o fork saiu (WIFEXITED) e se sim, pegamos o signal enviado usando WEXITSTATUS(status da saída) e usamos a chamada strsignal(provida pela string.h) para recuperar uma versão em texto do signal. Nesse caso iremos recuperar o signal "KILLED", pois colocamos 9 apenas por razões educativas.

    Normalmente se tudo ocorreu bem colocamos 0 (inclusive é dessa maneira que sua shell avalia se o programa rodou certo).

    $./work && echo "Filho saiu com 0, tudo certo..."  || echo "Filho saiu com 1, algo errado..."

    No caso acima a nossa shell irá criar um fork do nosso work, executar o nosso programa (que por sua vez também executa um fork mas não entra em questão aqui) e se o signal retornado pelo fork for 0 ele imprime uma mensagem, caso contrario ele imprime uma mensagem de erro, dessa maneira você pode orquestrar um shell scripting usando o própio retorno do processo 😉

    Tente mudar o retorno do fork acima e verifique seu status usando funções providas pela <sys/wait.h>. No exemplo acima usamos apenas a call WIFEXITED e WEXITSTATUS, mas existem várias outras.

    Forks são de extrema importância para criação e gerenciamento de processos e iremos usar forks para que seja possível executar o programa que queremos debugar, dessa maneira o software em questão vai ser filho do nosso debugger, o que nós da total controle sobre o mesmo.

    Comentarios são todos bem vindos e todos os códigos usados estão disponíveis no github! 😀


    Links úteis:

        Process Control
        fork
        wait
        Process State
        Fork Bomb - Cuidado com isso

    • Curtir 2
    Sign in to follow this  


    User Feedback

    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.

    Guest

  • Similar Content

    • By julio neves
      Livro do Julio Cezar Neves com dicas importantes (e raras de serem encontradas) sobre shell, incluindo sincronismo de processos, novidades do Bash 4.0, uso do ImageMagik e YAD (o melhor da categoria dos dialog da vida). Vale ler cada palavra. 🙂
    • By lucass
      Vou começar agradecendo ao @Fernando Mercês pela oportunidade e por ter sugerido este artigo, que também me motivou bastante a escrevê-lo!
      Introdução
      Não sou conhecido internet a dentro, apenas acompanho alguns canais no Discord (tal como o do Mente Binária). Meu nível de programação e engenharia reversa não é algo admirável ainda. Em um grupo especifico intitulado "Terra do 1337", que é um grupo fechado de amigos com finalidade de estudar engenharia reversa, programação e descontrair, eu surgi com uma idéia de escrever uma ferramenta que iria facilitar a vida de muitos nesta área de engenharia reversa e achei de API Inspector.
      A seguir um spoiler de como foi o início do projeto, para quem se interessar. 😉
      O que é o API Inspector
      É uma ferramenta de código-aberto voltada para área de engenharia reversa, que irá auxiliar na análise de funções correspondentes a certas API's do Windows, retornando informações obtidas dos argumentos caso a função seja chamada pela aplicação.
      O que ele faz
      Ele faz um hook (do Inglês "gancho"), que consiste num desvio na função original da API solicitada para nossa própria função e com isso podemos obter os dados (argumentos/parâmetros) que foram passados para tal função.
      Como ele funciona
      O princípio de um hook é simples: você insere no inicio da função um salto que irá levar para a sua função (que é uma cópia da função original) e depois de efetuar o que quiser, irá retornar para a função original prosseguir.
      Talvez mais fácil visualizar o que expliquei com código:
      //Aqui está a função //ZwWriteVirtualMemory | NtWriteVirtualMemory, originada do binário: ntdll.dll //créditos ao https://undocumented.ntinternals.net/ NTSYSAPI NTSTATUS NTAPI //WINAPI NtWriteVirtualMemory( IN HANDLE ProcessHandle, IN PVOID BaseAddress, IN PVOID Buffer, IN ULONG NumberOfBytesToWrite, OUT PULONG NumberOfBytesWritten OPTIONAL ); //Sua versão assembly 777F2110 mov eax,0x3A 777F2115 mov edx,ntdll.77808D30 777F211A call edx 777F211C ret 0x14 //O que nós vamos fazer é criar uma função similar á ela com o nome que decidirmos //Então vamos inserir um jmp no início da função original para nossa função, ficando assim: 777F2110 jmp api inspector.573523EC 777F2115 mov edx,ntdll.77808D30 777F211A call edx 777F211C ret 0x14 //Usei como exemplo minha próprio ferramenta! //Então quando ocorrer a chamada desta função ela será jogada em nossa função! Depois de nós fazermos que desejar vamos retorna-la, porém para uma região que aloquei onde contém //Um buffer dos bytes que foram sobrescritos da função original: 03610000 mov eax,0x3A 03610005 jmp ntdll.777F2115 //Ela irá retornar depois do jmp que existe na função original e continuar o código.... Vantagens de se utilizar o API Inspector ao invés de um debugger
      Imagine que você está visualizando as chamadas intermodulares (para bibliotecas externas, no caso) que um programa faz, utilizando um debugger (o x64dbg por exemplo) e notou que uma certa função que deseja inspecionar é chamada em diversos pontos do programa. Vejo duas opções neste caso: colocar vários breakpoints, um em cada chamada à função, no código do programa ou colocar um único breakpoint função em si, no código dela, na DLL.
      Em ambos os casos, você vai precisar analisar chamada por chamada, parâmetro por parâmetro. E se a função for chamada 20 vezes consecutivamente? O tempo que você levaria para visualizar apenas o primeiro parâmetro da chamada é o tempo que a ferramenta iria levar para exibir todas as 20 chamadas, com os argumentos formatados bonitinhos ao seu dispor. Entende a vantagem? 🙂
      E as desvantagens?
      Por hora, uma desvantagem é a quantidade de funções e API's suportadas. De fato, a primeira release não possui uma quantidade significativa que vá fazer você utilizar a ferramenta e nem uma quantidade de recursos interessantes na ferramenta. Mas é ai que vem o ponto chave, o fato de deixar ela pública remete ao próprio crescimento da mesma, no primeiro momento é necessário uma orientação da parte de vocês para me ajudar a melhorar o código visual. O segundo passo é eu e vocês começarem a fornecerem mais recursos para ela. Eu irei adicionar todo ou qualquer recurso que seja significativo para a mesma, e para isso eu já tenho mais funcionalidades para implementar na ferramenta que são excelentes.
      Interface gráfica
      Na imagem abaixo, utilizei o API Inspector para hookar a função MessageBoxW() da USER32.DLL. Depois disso, escrevi um texto num novo arquivo no Notepad++ e tentei fechar o programa. Ao fazer isso, o Notepad++ perguntou se eu queria salvar o arquivo e ele faz isso através de uma chamada à MessageBoxW(), que o API Inspector interceptou prontamente.

      Na imagem acima, a janela à esquerda mostra o que está atualmente passando pelas funções hookadas. Na janela a direita, temos um log.
      Como utilizar o API Inspector
      A única coisa que você precisa fazer é anexar a DLL do API Inspector ao processo desejado e para isso existem os softwares chamados "Injetores de DLL" que podem ser achados na internet.
      Você também pode criar o seu próprio injetor. Uma dica é pesquisar sobre injeção com a função LoadLibrary(), mas no exemplo a seguir eu vou mostrar como utilizar o Process Hacker para fazer a injeção.
      1 - Abra o Process Hacker e identifique no mesmo o processo no qual você quer injectar a DLL do API Inspector. No exemplo, usei o processo do Notepad++.

      2 - Clique com o botão direito sobre o processo e escolha Miscellaneous > Inject DLL.

      3 - Selecione a DLL API-Inspector.dll e clique em Abrir.

      4 - Se o Process Hacker possuir privilégios suficientes a ferramenta irá ser carregada, caso contrário, não.

      Após isso você precisa selecionar a API desejada, a função desejada e clicar em GO Hook!
      O step call é uma funcionalidade que vai fazer a ferramenta aguardar o pressionamento da tecla ENTER para retornar para a função original. Pronto, o seu hook está feito e você já poderá inspecionar a função desejada.
      Download e código
      No repositório do API Inspector no Github você pode baixar a versão compilada e ter acesso ao código-fonte também. Contribuições são muito bem vindas!
      Bom, eu nunca tinha escrito um artigo. Se faltou informação ou coloquei informação demais me desculpe. Estou aberto pra ler os comentários. Ah, e participem deste projeto! Eu quero fazer ele crescer muito. Caso precise de referências de como cheguei a este projeto, tem tudo na página inicial do projeto no Github.
      Agradecimentos
      Obrigado novamente ao Fernando Mercês, ao pessoal do Terra 1337 que me incentiva cada vez mais e em especial para o iPower e Luan que são colaboradores do projeto.
      Referências
      Dear ImGui Programming reference for the Win32 API NTAPI Undocumented Functions C++ 3D DirectX Programming
    • By ncaio
      ====== Bem-vindo a bordo ======

      Este é um repositório/espaço aberto/livre de conteúdo referente a hardware hacking em geral. Sinta-se a vontade para contribuir e retirar suas dúvidas. Assim como em outros espaços de conhecimento compartilhado na Internet, este Fórum tem regras. Algumas delas, são:
        * Seja educado(a) e respeitoso(a);
        * Pesquise antes;
        * Seja claro(a) e descritivo(a);
        * Esteja preparado(a) para compartilhar informações relevantes a sua dúvida;
        * Não fuja do foco;
        * Referencie autores;
        * E etc.
    • By Fabiano Furtado
      Pessoal...
      Ontem achei um artigo na Internet bem escrito, interessante e detalhado sobre Engenharia Reversa em ELF.
      É um reversing básico, mas não tããããão básico assim. Acho que vale a pena conferir.
      http://manoharvanga.com/hackme/
      Valeu!
×
×
  • Create New...